eeeeee

Y

Implicit Integration

= All integration schemes are only conditionally stable
= |.e.: they are only stable for a specific range for At
= This range depends on the stiffness of the springs

= Goal: unconditionally stability

= One option: implicit Euler integration

explicit implicit
xITh = x! + Atv! xIth = xt + Atvit!
t+1 1 t+1 _ Lot
viTt =vi + At—F(x") viTth=vi + At—Ff(x")
m; m;j

= Now we've got a system of non-linear, algebraic equations, with
x#1 and vt as unknowns on both sides — implicit integration

G. Zachmann Virtual Reality & Simulation WS December 2012 Mass-Spring-Systems 23

eeeeee

W Solution Method

= Write the whole spring-mass system with vectors:

(Xll\ (Vll\
X v

(xl\ Xiz (Vl\ vii f1(x)

X \'
X = _2 = X21 vV = _2 = V21 f(x) =

Kx.n) X?2 \vn) V522 fn(x)
\x03 \vis

\)

G. Zachmann Virtual Reality & Simulation WS December 2012 Mass-Spring-Systems

eeeeee

= Write all the implicit equations as one big system of equations :
Mvit = Myt + Atf(x") (1)
x'Th = x' 4+ Atv'! (2)
= Plug (2) into (1) :

Myt = Myt + At f(x' + AtvtH) 3)

= Expand f as Taylor series:

f(x! + At vt = f(x') + % f(x") - (At vt 4)

+ O((Al’ Vt—|—1)2)

G. Zachmann Virtual Reality & Simulation WS December 2012 Mass-Spring-Systems

25

eeeeee

=
' CG nE

VR %

= Plug (4) into (3):

M vt—i—l

Myt + At (f(xt) + a% f(xt) (At vf+1)>

-~

K
= Mv' + At f(x') + At? K vt

J/

= K is the Jacobi-Matrix, i.e., the derivative of f (w.r.t.x):

0 0
Ox11 f-ll Ox1o fll S Ox3 fll
K : . . - .
0 0
8X11 fn3 o o o o o o 8Xn3 fn3

= K is called the tangent stiffness matrix

- (The normal stiffness matrix is evaluated at the equilibrium of the system:
here the matrix is evaluated at an arbitrary "position" of the system in phase
space, hence the name "tangent ...")

G. Zachmann Virtual Reality & Simulation WS December 2012 Mass-Spring-Systems 26

eeeeee

=
' CG nE

VR %

Reorder terms :

(M —At? K) vt = Mv' + At f(x")

Now, this has the form:
Avitl —p
mit A€ R pec R

Solve this system of linear equations with any of the iterative
solvers

Don't use a non-iterative solver, because
= A changes with every frame (simulation step)

= We can "warm start" the iterative solver with the solution as of last frame

G. Zachmann Virtual Reality & Simulation WS December 2012 Mass-Spring-Systems 27

eeeeee

W Computation of the Stiffness Matrix

= First, understand the anatomy of matrix K :

= A spring (i,j) adds the following four 3x3 block matrices to K :
3i—>(B , \
I' .

] Kii| - |Kij

3i 3

= Matrix Kj; arises from the derivation of f; = (f, fi, f;3)
w.r.t. xj= (Xj1, Xj2, Xj3):

d 0 £ 0 F
8Tj1f;l 8Xj2 i1 an3 f;l
Kij = . .
9_f .. 0 £
8Tj1ﬁ3 8Xj3 fl3

= In the following, consider only f* (spring force)

G. Zachmann Virtual Reality & Simulation WS December 2012 Mass-Spring-Systems

28

eeeeee

= First of all, compute Kij;:

Kii

G. Zachmann

= k| —1—1,

1
= &<fp+% I+

0

= —filxi. %))

(9x,-

= ksi.((xj—xi)—lo o)

Ix; = xi]

(xj—x,-)_'_

[|x;—xi|

—I-|[x; = x| = (x; — x;)-2

Ixj — x|

2l
[x; —x;l| " []x; —x;|]3

(= %)~ x)")

Virtual Reality & Simulation WS December 2012 Mass-Spring-Systems

29

G. Zachmann Virtual Reality & Simulation WS December 2012

Mass-Spring-Systems

30

eeeee

= Aus einigen Symmetrien folgt:

= K

G. Zachmann

.:a_xj

0
= a—xjfi(xi,xj) =

0
fi(xi, ;) =

Virtual Reality & Simulation

—Kii

0

WS

(—fi(xi, x;)) = Kii

December 2012

Mass-Spring-Systems

¥, cc =
VR =

31

eeeeee

W Overall Solution Algorithm

" |nitialize K=0

= For each spring (i,j) compute K;, K:;, K:;, K; and accumulate it

iir jr Bjir
to K at the right places

"= Compute b= Mv" + At f(x")
= Solve the linear equation system Avitl = b — yitl

= Compute x"' =x"+ Atv''!

G. Zachmann Virtual Reality & Simulation WS December 2012

Mass-Spring-Systems

32

eeeeee

Y

Advantages and Disadvantages

= Explicit integration:
+ Very easy to implement
- Small step sizes needed
- Stiff springs don't work very well
- Forces are propagated only by one spring per time step
= Implicit Integration:
+ Unconditionally stable
+ Stiff springs work better
+ Globale solver — forces are being propagated throughut the
whole pring-mass system with one time step

- Large stime steps are needed, because one step is much more
expensive (if real-time is needed)

- The integration scheme introduces damping by itself (might be
unwanted)

G. Zachmann Virtual Reality & Simulation WS December 2012 Mass-Spring-Systems

33

eeeeee

Y e

VR =

= Visualization of: x(t) = —x(t)

position

> ===

time ' \\\\

= |Informal Descripiton:

= Explicit jumps forward behindly, based on current information

= Implicit jumps backward and tries to find a future position such that the
backwards jump arrives exactly at the current point (in phase space)

G. Zachmann Virtual Reality & Simulation WS December 2012 Mass-Spring-Systems 34

Bremen

W Demo Bk

®e00 Mass Spring System Demo

Display a menu v

http://www.dhteumeuleu.com/dhtml/v-grid.html

G. Zachmann Virtual Reality & Simulation WS December 2012 Mass-Spring-Systems 35

eeeeee

WY Mesh Creation for Volumetric Objects g

= How to create a mass-spring system for a volumetric model?

= Direct conversion of 3D (surface) geometry into spring-mass
system does not yield good results:

= Geometry has too high a complexity
= Degenerate polygons
= Better (and still simple) idea:
= Create a tetrahedron mesh out of the geometry (somehow)

= Each vertex (node) of the tetrahedron mesh becomes a mass point,
each edge a spring

= Distribute the masses of the tetraeder (= density x volume) equally
among the mass point

G. Zachmann Virtual Reality & Simulation WS December 2012 Mass-Spring-Systems 36

eeeee

= Generation of the tetrahedron mesh (simple method):

= Distribute a number of points uniformly (perhaps randomly) in the
interior of the geometry (so called "Steiner points")

= Dito for a sheet/band above the surface

= Connect the points by Delaunay triangulation (see my "Geometric
Data structures" course)

= Anchor the surface meshes within the tetraeder mesh:

= Represent each vertex of the surface mesh by baryzentric combination
of ist surrounding tetraeder mesh

G. Zachmann Virtual Reality & Simulation WS December 2012 Mass-Spring-Systems

37

eeeeee

= |n addition (optionally):

= Anchor the outer mass points (of
the tetrahedron mesh) at
(imaginary) walls

= Introduce diagonal
"struts" (Streben)

G. Zachmann Virtual Reality & Simulation WS December 2012 Mass-Spring-Systems 38

eeeeee

W Collision Detection

= Put all tetrahedra in a 3D grid (use a hash tablel!)

" |n case of a collision in the hash table:

= Compute exact intersection between the 2 involved tetrahedra

G. Zachmann Virtual Reality & Simulation WS December 2012 Mass-Spring-Systems

. =
. CG 5
VR X

39

eeeeee

Collision Response K5

= Task: objects P and Q (= tetrahedral meshes) collide —
what is the penalty force?
= Naive approach:

= For each mass point of P that
has penetrated, compute its
closest distance from the surface

of Q — force (amount + direction)

" Problem:

= Implausible forces

= "Tunneling" (s. a. the chapter on force-feedback)

G. Zachmann Virtual Reality & Simulation WS December 2012 Mass-Spring-Systems 40

= Examples:

inconsistent consistent

T\ AT

4 4

G. Zachmann Virtual Reality & Simulation WS December 2012 Mass-Spring-Systems 41

eeeeee

U Consistente Penalty Forces

1. Phase: identify all points of P that
penetrate Q

2. Phase: determine all edges of P that

intersect the surface of Q

= For each such edge, compute the exact

intersection point x;

= For each intersection point, compute a

normal n;

- E.g., by barycentric interpolation of the vertex

normals of Q

G. Zachmann Virtual Reality & Simulation WS December 2012 Mass-Spring-Systems

eeeeee

3. Phase: compute the approximate force for border points

= Border point = a point p that penetrates Q and is incident to an
intersecting edge

= Observation: a border point can be incident to several intersecting edges

= Set the penetration depth for point p
to Q

d(p) = Zf;l wz(:’ z)(iXIp_) p) N

where d(p) = approx. penetration depth

of mass point p, x; = point of the
intersection of an edge incident to p with

surface Q, n;=normal to surface of Q
at point x;,

1
and CU(X,', p) = m

G. Zachmann Virtual Reality & Simulation WS December 2012 Mass-Spring-Systems 43

eeeeee

= Direction of the penalty force on border points:

Uy uten
P = S5 o p)

4. Phase: propagate forces by way of breadth-first traversal through
the tetrahedron mesh

> w(ps, p)((pi —p)-ri +d(pi))
Zf'(:l w(X;, p)

where p; = points of P that have been visited already, p = point
not yet visited, r;= direction of the estimated penalty force in

point p; .

d(p) =

G. Zachmann Virtual Reality & Simulation WS December 2012 Mass-Spring-Systems

44

Bremen

W Visualization

—
.
—

G. Zachmann Virtual Reality & Simulation

WS

December 2012

Mass-Spring-Systems

45

eeeeee

W Video

Consistent Penetration
Depth Estimation
for Deformable
Collision Response

http://cg.informatik.uni-freiburg.de

G. Zachmann Virtual Reality & Simulation WS December 2012

Mass-Spring-Systems

<n
E-X3)

46

