
G. Zachmann 23 Mass-Spring-Systems Virtual Reality & Simulation 12 December 2012 WS

Implicit Integration

§  All integration schemes are only conditionally stable

§  I.e.: they are only stable for a specific range for Δt

§  This range depends on the stiffness of the springs

§  Goal: unconditionally stability

§  One option: implicit Euler integration

§  Now we've got a system of non-linear, algebraic equations, with
xt+1 and vt+1 as unknowns on both sides → implicit integration

xt+1
i = xt

i + �tvt
i xt+1

i = xt
i + �tvt+1

i

explicit implicit

v

t+1
i = v

t
i + �t

1

mi
f(xt+1)v

t+1
i = v

t
i + �t

1

mi
f(xt)

G. Zachmann 24 Mass-Spring-Systems Virtual Reality & Simulation 12 December 2012 WS

Solution Method

§  Write the whole spring-mass system with vectors:

x =

0

BBB@

x1

x2
...
xn

1

CCCA
=

0

BBBBBBBBB@

x11

x12

x13

x21

x22
...

xn3

1

CCCCCCCCCA

v =

0

BBB@

v1

v2
...
vn

1

CCCA
=

0

BBBBBBBBB@

v11

v12

v13

v21

v22
...

vn3

1

CCCCCCCCCA

f(x) =

0

B@
f1(x)

...
fn(x)

1

CA

f

i

=

0

@
f
i1(x)
f
i2(x)
f
i3(x)

1

A M3n x 3n

=

0

BBBBBBBBBBBBB@

m1

m1

m1

m2

m2
. . .

m
n

m
n

m
n

1

CCCCCCCCCCCCCA

G. Zachmann 25 Mass-Spring-Systems Virtual Reality & Simulation 12 December 2012 WS

§  Write all the implicit equations as one big system of equations :

§  Plug (2) into (1) :

§  Expand f as Taylor series:

Mvt+1 = Mvt + �tf(xt+1) (1)

xt+1 = xt + �t vt+1 (2)

Mvt+1 = Mvt + �t f(xt + �tvt+1) (3)

(4)

G. Zachmann 26 Mass-Spring-Systems Virtual Reality & Simulation 12 December 2012 WS

§  Plug (4) into (3):

§  K is the Jacobi-Matrix, i.e., the derivative of f (w.r.t.x):

§  K is called the tangent stiffness matrix

-  (The normal stiffness matrix is evaluated at the equilibrium of the system:
here the matrix is evaluated at an arbitrary "position" of the system in phase
space, hence the name "tangent …")

G. Zachmann 27 Mass-Spring-Systems Virtual Reality & Simulation 12 December 2012 WS

§  Reorder terms :

§  Now, this has the form:

§  Solve this system of linear equations with any of the iterative
solvers

§  Don't use a non-iterative solver, because

§  A changes with every frame (simulation step)

§ We can "warm start" the iterative solver with the solution as of last frame

G. Zachmann 28 Mass-Spring-Systems Virtual Reality & Simulation 12 December 2012 WS

Computation of the Stiffness Matrix

§  First, understand the anatomy of matrix K :

§  A spring (i , j) adds the following four 3x3 block matrices to K :

§ Matrix Kij arises from the derivation of fi = (fi1, fi2, fi3)
w.r.t. xj = (xj1, xj2, xj3):

§  In the following, consider only fs (spring force)

3i

3j

3i 3j

i j

Ki j =

�

⇧⇤

�
�xj1

fi1
�

�xj2
fi1

�
�xj3

fi1
...

...
�

�xj1
fi3 · · · �

�xj3
fi3

⇥

⌃⌅

G. Zachmann 29 Mass-Spring-Systems Virtual Reality & Simulation 12 December 2012 WS

§  First of all, compute Kii:

Ki i =
�

�xi
fi(xi , xj)

= ks
�

�xi

�
(xj � xi)� l0

xj � xi

⇥xj � xi⇥

⇥

= ks

⇧

⌥�I � l0
�I ·⇥xj � xi⇥ � (xj � xi)·2 (xj�xi)�

⇥xj�xi⇥

⇥xj � xi⇥2

⌃

�

= ks

⇤
�I + l0

1

⇥xj � xi⇥
I +

2l0
⇥xj � xi⇥3

(xj � xi)(xj � xi)
T

⌅

—

G. Zachmann 30 Mass-Spring-Systems Virtual Reality & Simulation 12 December 2012 WS

§  Zur Erinnerung:

§ 

§ 
�

�x
�x� =

�

�x

�⇤
x2
1 + x2

2 + x2
3

⇥
= 2

xT

�x�

G. Zachmann 31 Mass-Spring-Systems Virtual Reality & Simulation 12 December 2012 WS

§  Aus einigen Symmetrien folgt:

§ 

§ 

§ 

Ki j =
�

�xj
fi(xi , xj) = �Ki i

Kj j =
�

�xj
fj(xi , xj) =

�

�xj
(�fi(xi , xj)) = Ki i

G. Zachmann 32 Mass-Spring-Systems Virtual Reality & Simulation 12 December 2012 WS

Overall Solution Algorithm

§  Initialize K = 0

§  For each spring (i , j) compute Kii, Kij, Kji, Kjj and accumulate it
to K at the right places

§  Compute

§  Solve the linear equation system →

§  Compute xt+1 = xt + �t vt+1

Avt+1 = b

G. Zachmann 33 Mass-Spring-Systems Virtual Reality & Simulation 12 December 2012 WS

Advantages and Disadvantages

§  Explicit integration:
+ Very easy to implement
- Small step sizes needed
- Stiff springs don't work very well
- Forces are propagated only by one spring per time step

§  Implicit Integration:
+ Unconditionally stable
+ Stiff springs work better
+ Globale solver → forces are being propagated throughut the
 whole pring-mass system with one time step

 - Large stime steps are needed, because one step is much more
 expensive (if real-time is needed)

 - The integration scheme introduces damping by itself (might be
 unwanted)

G. Zachmann 34 Mass-Spring-Systems Virtual Reality & Simulation 12 December 2012 WS

§  Visualization of:

§  Informal Descripiton:

§  Explicit jumps forward behindly, based on current information

§  Implicit jumps backward and tries to find a future position such that the
backwards jump arrives exactly at the current point (in phase space)

time

po
si

tio
n

ẋ(t) = �x(t)

G. Zachmann 35 Mass-Spring-Systems Virtual Reality & Simulation 12 December 2012 WS

Demo

http://www.dhteumeuleu.com/dhtml/v-grid.html

G. Zachmann 36 Mass-Spring-Systems Virtual Reality & Simulation 12 December 2012 WS

Mesh Creation for Volumetric Objects

§  How to create a mass-spring system for a volumetric model?

§  Direct conversion of 3D (surface) geometry into spring-mass

system does not yield good results:

§  Geometry has too high a complexity

§  Degenerate polygons

§  Better (and still simple) idea:

§  Create a tetrahedron mesh out of the geometry (somehow)

§  Each vertex (node) of the tetrahedron mesh becomes a mass point,

each edge a spring

§  Distribute the masses of the tetraeder (= density × volume) equally

among the mass point

G. Zachmann 37 Mass-Spring-Systems Virtual Reality & Simulation 12 December 2012 WS

§  Generation of the tetrahedron mesh (simple method):
§  Distribute a number of points uniformly (perhaps randomly) in the

interior of the geometry (so called "Steiner points")

§  Dito for a sheet/band above the surface

§  Connect the points by Delaunay triangulation (see my "Geometric
Data structures" course)

§  Anchor the surface meshes within the tetraeder mesh:

§  Represent each vertex of the surface mesh by baryzentric combination
of ist surrounding tetraeder mesh

G. Zachmann 38 Mass-Spring-Systems Virtual Reality & Simulation 12 December 2012 WS

§  In addition (optionally):

§  Anchor the outer mass points (of
the tetrahedron mesh) at
(imaginary) walls

§  Introduce diagonal
"struts" (Streben)

G. Zachmann 39 Mass-Spring-Systems Virtual Reality & Simulation 12 December 2012 WS

Collision Detection

§  Put all tetrahedra in a 3D grid (use a hash table!)

§  In case of a collision in the hash table:

§  Compute exact intersection between the 2 involved tetrahedra

G. Zachmann 40 Mass-Spring-Systems Virtual Reality & Simulation 12 December 2012 WS

Collision Response

§  Task: objects P and Q (= tetrahedral meshes) collide —
what is the penalty force?

§  Naïve approach:

§  For each mass point of P that
has penetrated, compute its
closest distance from the surface
of Q → force (amount + direction)

§  Problem:

§  Implausible forces

§  "Tunneling" (s. a. the chapter on force-feedback)

•4

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

! rigid and deformable objects

! collisions, self-collisions, n-body environments

! memory efficient, interactive

Spatial Hashing - Summary

Collision Response

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Introduction

! computation of penalty forces based on the

penetration depth of intersecting vertices

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Challenges

! inconsistent penetration depth information due to

discrete simulation steps and object discretization

! [Heidelberger, Teschner et al. 2003]

inconsistent inconsistent consistentconsistent

Q

P

G. Zachmann 41 Mass-Spring-Systems Virtual Reality & Simulation 12 December 2012 WS

§  Examples:

inconsistent consistent

G. Zachmann 42 Mass-Spring-Systems Virtual Reality & Simulation 12 December 2012 WS

Consistente Penalty Forces

1. Phase: identify all points of P that

penetrate Q

2. Phase: determine all edges of P that

intersect the surface of Q

§  For each such edge, compute the exact

intersection point xi

§  For each intersection point, compute a

normal ni

-  E.g., by barycentric interpolation of the vertex
normals of Q

•5

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 1

! object points are classified as colliding

or non-colloding points ! spatial hashing

non-colliding point

colliding point

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 2

! border points, intersecting edges, and intersection points

are detected ! extended spatial hashing

intersection edge

border point

intersection point

intersection normal

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 3

! penetration depth d(p) of a border point p is

approximated using the adjacent intersection
points xi and normals ni

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 4

! consistent penetration depth information at points pj is

propagated to other colliding points p

P

Q

•5

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 1

! object points are classified as colliding

or non-colloding points ! spatial hashing

non-colliding point

colliding point

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 2

! border points, intersecting edges, and intersection points

are detected ! extended spatial hashing

intersection edge

border point

intersection point

intersection normal

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 3

! penetration depth d(p) of a border point p is

approximated using the adjacent intersection
points xi and normals ni

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 4

! consistent penetration depth information at points pj is

propagated to other colliding points p

G. Zachmann 43 Mass-Spring-Systems Virtual Reality & Simulation 12 December 2012 WS

3. Phase: compute the approximate force for border points

§  Border point = a point p that penetrates Q and is incident to an
intersecting edge

§ Observation: a border point can be incident to several intersecting edges

§  Set the penetration depth for point p
to

where d(p) = approx. penetration depth

of mass point p, xi = point of the
intersection of an edge incident to p with
surface Q, ni = normal to surface of Q
at point xi ,

and

d(p) =

�k
i=1 �(xi ,p) (xi � p)·ni�k

i=1 �(xi ,p)

�(xi ,p) =
1

⇥xi � p⇥

•5

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 1

! object points are classified as colliding

or non-colloding points ! spatial hashing

non-colliding point

colliding point

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 2

! border points, intersecting edges, and intersection points

are detected ! extended spatial hashing

intersection edge

border point

intersection point

intersection normal

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 3

! penetration depth d(p) of a border point p is

approximated using the adjacent intersection
points xi and normals ni

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 4

! consistent penetration depth information at points pj is

propagated to other colliding points p

Q

P

G. Zachmann 44 Mass-Spring-Systems Virtual Reality & Simulation 12 December 2012 WS

§  Direction of the penalty force on border points:

4. Phase: propagate forces by way of breadth-first traversal through
the tetrahedron mesh

where pi = points of P that have been visited already, p = point
not yet visited, ri = direction of the estimated penalty force in
point pi .

d(p) =

⇤k
i=1 �(pi ,p)

�
(pi � p)·ri + d(pi)

⇥
⇤k

i=1 �(xi ,p)

r(p) =

Pk
i=1 !(xi ,p)niPk
i=1 !(xi ,p)

G. Zachmann 45 Mass-Spring-Systems Virtual Reality & Simulation 12 December 2012 WS

Visualization

G. Zachmann 46 Mass-Spring-Systems Virtual Reality & Simulation 12 December 2012 WS

Video

http://cg.informatik.uni-freiburg.de

