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Implicit Integration 

§  All integration schemes are only conditionally stable 

§  I.e.: they are only stable for a specific range for Δt 

§  This range depends on the stiffness of the springs 

§  Goal: unconditionally stability 

§  One option:  implicit Euler integration 

§  Now we've got a system of non-linear, algebraic equations, with 
xt+1  and  vt+1  as unknowns on both sides →  implicit integration  
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Solution Method  

§  Write the whole spring-mass system with vectors: 
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§  Write all the implicit equations as one big system of equations : 

§  Plug (2) into (1) : 

§  Expand f as Taylor series: 

Mvt+1 = Mvt + �tf(xt+1) (1)

xt+1 = xt + �t vt+1 (2)

Mvt+1 = Mvt + �t f( xt + �tvt+1 ) (3) 

(4) 
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§  Plug (4) into (3): 

§  K  is the Jacobi-Matrix, i.e., the derivative of f (w.r.t.x): 

§  K is called the tangent stiffness matrix 

-  (The normal stiffness matrix is evaluated at the equilibrium of the system: 
here the matrix is evaluated at an arbitrary "position" of the system in phase 
space, hence the name "tangent …") 
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§  Reorder terms : 

§  Now, this has the form: 

 

§  Solve this system of linear equations with any of the iterative 
solvers 

§  Don't use a non-iterative solver, because 

§  A changes with every frame (simulation step) 

§ We can "warm start" the iterative solver with the solution as of last frame 
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Computation of the Stiffness Matrix 

§  First, understand the anatomy of matrix K : 

§  A spring ( i , j )  adds the following four 3x3 block matrices to K : 

 

 

 

 

 

§ Matrix Kij  arises from the derivation of  fi = (fi1, fi2, fi3)   
w.r.t. xj = (xj1, xj2, xj3): 
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§  First of all, compute  Kii: 
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§  Zur Erinnerung: 
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§  Aus einigen Symmetrien folgt: 

§    

§    

§    
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Overall Solution Algorithm 

§  Initialize K = 0 

§  For each spring  ( i , j)   compute  Kii, Kij, Kji, Kjj  and accumulate it 
to K at the right places 

§  Compute 

§  Solve the linear equation system                     → 

§  Compute xt+1 = xt + �t vt+1

Avt+1 = b
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Advantages and Disadvantages 

§  Explicit integration: 
+ Very easy to implement 
- Small step sizes needed 
- Stiff springs don't work very well 
- Forces are propagated only by one spring per time step 

§  Implicit Integration: 
+ Unconditionally stable 
+ Stiff springs work better 
+ Globale solver → forces are being propagated throughut the 
   whole pring-mass system with one time step 

   - Large stime steps are needed, because one step is much more   
      expensive (if real-time is needed) 

   - The integration scheme introduces damping by itself (might be 
      unwanted) 
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§  Visualization of: 

§  Informal Descripiton: 

§  Explicit jumps forward behindly, based on current information 

§  Implicit jumps backward and tries to find a future position such that the 
backwards jump arrives exactly at the current point (in phase space) 

time 
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Demo 

http://www.dhteumeuleu.com/dhtml/v-grid.html  
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Mesh Creation for Volumetric Objects 

§  How to create a mass-spring system for a volumetric model? 

§  Direct conversion of 3D (surface) geometry into spring-mass 

system does not yield good results: 

§  Geometry has too high a complexity 

§  Degenerate polygons 

§  Better (and still simple) idea: 

§  Create a tetrahedron mesh out of the geometry (somehow) 

§  Each vertex (node) of the tetrahedron mesh becomes a mass point, 

each edge a spring 

§  Distribute the masses of the tetraeder (= density × volume) equally 

among the mass point 
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§  Generation of the tetrahedron mesh (simple method): 
§  Distribute a number of points uniformly (perhaps randomly) in the 

interior of the geometry (so called "Steiner points") 

§  Dito for a sheet/band above the surface 

§  Connect the points by Delaunay triangulation (see my "Geometric 
Data structures" course) 

§  Anchor the surface meshes within the tetraeder mesh: 

§  Represent each vertex of the surface mesh by baryzentric combination 
of ist surrounding tetraeder mesh 
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§  In addition (optionally):  

§  Anchor the outer mass points (of 
the tetrahedron mesh) at 
(imaginary) walls 

§  Introduce diagonal 
"struts" (Streben) 
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Collision Detection 

§  Put all tetrahedra in a 3D grid (use a hash table!) 

§  In case of a collision in the hash table: 

§  Compute exact intersection between the 2 involved tetrahedra 
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Collision Response 

§  Task: objects P and Q (= tetrahedral meshes) collide —  
what is the penalty force? 

§  Naïve approach: 

§  For each mass point of P that 
has penetrated, compute its 
closest distance from the surface 
of Q → force (amount + direction) 

§   Problem:  

§  Implausible forces  

§  "Tunneling" (s. a. the chapter on force-feedback) 

•4
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! memory efficient, interactive 
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§  Examples: 

inconsistent consistent 
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Consistente Penalty Forces 

1. Phase: identify all points of P that 

penetrate Q 

2. Phase: determine all edges of P that 

intersect the surface of Q 

§  For each such edge, compute the exact 

intersection point xi 

§  For each intersection point, compute a 

normal ni 

-  E.g., by barycentric interpolation of the vertex 
normals of Q 
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3. Phase: compute the approximate force for border points 

§  Border point = a point p that penetrates Q and is incident to an 
intersecting edge 

§ Observation: a border point can be incident to several intersecting edges 

§  Set the penetration depth for point p 
to 
 
 

 
where d(p) = approx. penetration depth  

of mass point p,   xi = point of the  
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surface Q,  ni = normal to surface of Q  
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§  Direction of the penalty force on border points: 

4. Phase: propagate forces by way of breadth-first traversal through 
the tetrahedron mesh 
 

 
 
where pi = points of P that have been visited already,   p = point 
not yet visited, ri = direction of the estimated penalty force in 
point pi . 
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Visualization 
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Video 

http://cg.informatik.uni-freiburg.de  


